Mechanisms of 1D crystal growth in reactive vapor transport: indium nitride nanowires.

نویسندگان

  • Sreeram Vaddiraju
  • Aditya Mohite
  • Alan Chin
  • M Meyyappan
  • Gamini Sumanasekera
  • Bruce W Alphenaar
  • Mahendra K Sunkara
چکیده

Indium nitride (InN) nanowire synthesis using indium (In) vapor transport in a dissociated ammonia environment (reactive vapor transport) is studied in detail to understand the nucleation and growth mechanisms involved with the so-called "self-catalysis" schemes. The results show that the nucleation of InN crystal occurs first on the substrate. Later, In droplets are formed on top of the InN crystals because of selective wetting of In onto InN crystals. Further growth via liquid-phase epitaxy through In droplets leads the growth in one dimension (1D), resulting in the formation of InN nanowires. The details about the nucleation and growth aspects within these self-catalysis schemes are rationalized further by demonstrating the growth of heteroepitaxially oriented nanowire arrays on single-crystal substrates and "tree-like" morphologies on a variety of substrates. However, the direct nitridation of In droplets using dissociated ammonia results in the spontaneous nucleation and basal growth of nanowires directly from the In melt surface, which is quite different from the above-mentioned nucleation mechanism with the reactive vapor transport case. The InN nanowires exhibit a band gap of 0.8 eV, whereas the mixed phase of InN and In(2)O(3) nanowires exhibit a peak at approximately 1.9 eV in addition to that at 0.8 eV.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chemical Vapor Deposition Synthesis of Novel Indium Oxide Nanostructures in Strongly Reducing Growth Ambient

The current study reports some interesting growth of novel In2O3 nanostructures using ambient-controlled chemical vapor deposition technique in the presence of a strongly reducing hydrazine ambient. The experiments are systematically carried out by keeping either of the carrier gas flow rate or the source temperature constant, and varying the other. For each of the depositions, the growth is st...

متن کامل

Electron Mobility Study of Hot-Wall CVD GaN and InN Nanowires

A review of the dependence of the electron mobility on the free carrier concentration for gallium nitride and indium nitride nanowires grown using hot-wall chemical vapour deposition is presented. Gallium nitride nanowires exhibit mobilities of 100 cm2/Vs to below 1 cm2/Vs for carrier concentrations of 1019 to 1020 cm−3. Theoretical estimations and annealing experiments indicate that the nanowi...

متن کامل

Chemical vapor deposition of m-plane and c-plane InN nanowires on Si (100) substrate

In this paper, synthesis of indium nitride (InN) nanowires (NWs) by chemical vapor deposition (CVD) is studied. InN NWs were synthesized via a vapor–liquid–solid (VLS) growth mechanism using high purity indium foil and ammonia as the source materials, and nitrogen as carrier gas. The mixture of nonpolar m-plane oriented and polar c-plane oriented tapered InN NWs is observed grown on top of Si (...

متن کامل

Synthesis of Serrated GaN Nanowires for Hydrogen Gas Sensors Applications by Plasma-Assisted Vapor Phase Deposition Method

Nowadays, the semiconductor nanowires (NWs) typically used in hydrogen gas sensors. Gallium nitride (GaN) with a wide band gap of 3.4 eV, is one of the best semiconductors for this function. NWs surface roughness have important role in gas sensors performance. In this research, GaN NWs have been synthesized on Si substrate by plasma-assisted vapor phase deposition at different deposition time, ...

متن کامل

Controlled growth of gallium nitride single-crystal nanowires using a chemical vapor deposition method

Chemical vapor deposition (CVD) using gold nanoparticles as the catalyst to grow high-quality single-crystal gallium nitride nanowires was developed. This method enables control over several important aspects of the growth, including control of the nanowire diameter by using monodispersed gold clusters, control of the nanowire location via e-beam patterning of the catalyst sites, and control of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nano letters

دوره 5 8  شماره 

صفحات  -

تاریخ انتشار 2005